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Determinant (Volume) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

Equivalent Formulation: 
Reuse 𝑉𝑉 to denote the matrix where its columns are the vectors 
in 𝑉𝑉
• Let 𝑀𝑀 be the gram matrix 𝑉𝑉𝑇𝑇𝑉𝑉
• Choose 𝑆𝑆 such that det(𝑀𝑀𝑆𝑆,𝑆𝑆) is maximized

𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖 · 𝑣𝑣𝑗𝑗

det 𝑀𝑀𝑆𝑆,𝑆𝑆 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆 2
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What is known?

• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
𝑈𝑈 ← ∅
For 𝑘𝑘 iterations, 
Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

• Greedy performs very well in practice

𝒌𝒌 = 𝟐𝟐
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Composable Core-sets

Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Solving the problem over 𝑼𝑼 gives a good approximation of solving the problem 
over 𝑽𝑽
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Composable Core-sets [AAIMV’13 and IMMM’14]:
Let 𝒇𝒇 be an optimization function
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 Composable Core-sets have been studied for the diversity Maximization

problems, for other notions of diversity: minimum pairwise distance, sum of

pairwise distances, etc.

 Determinant maximization is a higher order notion of diversity
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Applications: Streaming Computation

• Streaming Computation: 
• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• 𝒄𝒄-Composable Core-set of size 𝒌𝒌
• Chunks of size 𝑛𝑛𝑘𝑘 , thus number of chunks = 𝑛𝑛/𝑘𝑘
• Core-set for each chunk
• Total Space: 𝑘𝑘 𝑛𝑛/𝑘𝑘 + 𝑛𝑛𝑘𝑘 = 𝑂𝑂( 𝑛𝑛𝑘𝑘)
• Approximation Factor: 𝑐𝑐

𝒏𝒏𝒌𝒌 𝒏𝒏𝒌𝒌

Core-set Core-set



Applications: Distributed Computation

• Streaming Computation
• Distributed System:

• Each machine holds a block of data.
• A composable core-set is computed and sent to the server

• Map-Reduce Model: 
• One round of Map-Reduce
• 𝑛𝑛/𝑘𝑘 mappers each getting 𝑛𝑛𝑘𝑘 points
• Mapper computes a composable core-set of size 𝑘𝑘
• Will be passed to a single reducer

Core-set

Data

Data

Data

Mapper

Mapper

Mapper

Reducer Solution



Can we get a composable core-set 
of small size for the determinant 

maximization problem?



Results

Composable Core-sets for Determinant Maximization:

Algorithm:
There exists a polynomial time algorithm for computing an �𝑶𝑶 𝒌𝒌 𝒌𝒌 -
composable core-set of size �𝑶𝑶(𝒌𝒌) for the 𝑘𝑘-determinant maximization
problem.

Lower bound:
Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the 𝑘𝑘-determinant maximization
problem must have an approximation factor of 𝛀𝛀(𝒌𝒌)𝒌𝒌(𝟏𝟏−𝒐𝒐 𝟏𝟏 ).



Results

Composable Core-sets for Determinant Maximization:

Algorithm:
There exists a polynomial time algorithm for computing an �𝑶𝑶 𝒌𝒌 𝒌𝒌 -
composable core-set of size �𝑶𝑶(𝒌𝒌) for the 𝑘𝑘-determinant maximization
problem.

Lower bound:
Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the 𝑘𝑘-determinant maximization
problem must have an approximation factor of 𝛀𝛀(𝒌𝒌)𝒌𝒌(𝟏𝟏−𝒐𝒐 𝟏𝟏 ).

 Note the gap with the approximation factor of the best offline algorithm: 𝑒𝑒𝑐𝑐
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Spectral Spanners



Easy case 𝒌𝒌 = 𝒅𝒅



Spectral Spanners (𝒌𝒌 = 𝒅𝒅)

• Spanners: sparsifying a graph while preserving 
distances between nodes.

• Spectral Spanners: sparsifying a point set while 
preserving distances to hyperplanes.
• similar to core-sets for width [AHV’05]
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A subset 𝑼𝑼 ⊆ 𝑽𝑽 is a 𝜶𝜶-spectral spanner of 𝑉𝑉 if for every 𝒗𝒗 ∈ 𝑉𝑉, there 

exists a probability distribution 𝜇𝜇𝑣𝑣 over 𝑼𝑼, s.t. for every direction 𝒙𝒙 ∈ ℝ𝒅𝒅

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣[ 𝑥𝑥,𝑢𝑢 2]
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Spectral spanners are good core-sets

• Let 𝑉𝑉 be the point set
• Let 𝑈𝑈 be the spectral spanner of 𝑉𝑉 as its core-set
• Let 𝑂𝑂𝑂𝑂𝑂𝑂 be a subset of 𝑘𝑘 points in 𝑉𝑉 whose det is maximized.
• Goal: 𝑈𝑈 contains a “good” solution for det. Maximization
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𝑂𝑂𝑂𝑂𝑂𝑂 ⊂ 𝑉𝑉: the optimal 
solution over 𝑉𝑉

• Let 𝑉𝑉 be the point set
• Let 𝑈𝑈 be the spectral spanner of 𝑉𝑉 as its core-set
• Let 𝑂𝑂𝑂𝑂𝑂𝑂 be a subset of 𝑘𝑘 points in 𝑉𝑉 whose det is maximized.
• Goal: 𝑈𝑈 contains a “good” solution for det. Maximization



Spectral spanners are good core-sets

𝐴𝐴: a fractional 
solution over 𝑈𝑈

By spanner property, replace every 𝑣𝑣
∈ 𝑂𝑂𝑂𝑂𝑂𝑂 with a distribution on 𝑈𝑈
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• Let 𝑂𝑂𝑂𝑂𝑂𝑂 be a subset of 𝑘𝑘 points in 𝑉𝑉 whose det is maximized.
• Goal: 𝑈𝑈 contains a “good” solution for det. Maximization



Spectral spanners are good core-sets

𝐴𝐴: a fractional 
solution over 𝑈𝑈

𝑂𝑂: an integral 
solution over 𝑈𝑈

By spanner property, replace every 𝑣𝑣
∈ 𝑂𝑂𝑂𝑂𝑂𝑂 with a distribution on 𝑈𝑈

App. factor: 𝛼𝛼𝑑𝑑

[Nik’15]: using randomized 
rounding

App. factor: 𝑒𝑒𝑑𝑑

𝑂𝑂𝑂𝑂𝑂𝑂 ⊂ 𝑉𝑉: the optimal 
(integral) solution over 𝑉𝑉

• Let 𝑉𝑉 be the point set
• Let 𝑈𝑈 be the spectral spanner of 𝑉𝑉 as its core-set
• Let 𝑂𝑂𝑂𝑂𝑂𝑂 be a subset of 𝑘𝑘 points in 𝑉𝑉 whose det is maximized.
• Goal: 𝑈𝑈 contains a “good” solution for det. Maximization



Spectral spanners are good core-sets

det 𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 𝛼𝛼𝑑𝑑 det 𝐴𝐴 ≤ 𝛼𝛼𝑒𝑒 𝑑𝑑det(𝑂𝑂)

Will show: spectral spanner with 𝛼𝛼 = �𝑂𝑂(𝑑𝑑) and thus the app. factor is �𝑂𝑂 𝑑𝑑 𝑑𝑑.

𝐴𝐴: a fractional 
solution over 𝑈𝑈

𝑂𝑂: an integral 
solution over 𝑈𝑈

By spanner property, replace every 𝑣𝑣
∈ 𝑂𝑂𝑂𝑂𝑂𝑂 with a distribution on 𝑈𝑈

App. factor: 𝛼𝛼𝑑𝑑

[Nik’15]: using randomized 
rounding

App. factor: 𝑒𝑒𝑑𝑑

• Let 𝑉𝑉 be the point set
• Let 𝑈𝑈 be the spectral spanner of 𝑉𝑉 as its core-set
• Let 𝑂𝑂𝑂𝑂𝑂𝑂 be a subset of 𝑘𝑘 points in 𝑉𝑉 whose det is maximized.
• Goal: 𝑈𝑈 contains a “good” solution for det. Maximization

𝑂𝑂𝑂𝑂𝑂𝑂 ⊂ 𝑉𝑉: the optimal 
(integral) solution over 𝑉𝑉



Overall Picture

Spectral Spanners

Composable Core-sets 

for many spectral 

optimization problems

Generalizing the notion of 

Combinatorial Spanners

Streaming algorithm

Distributed algorithm

Map-Reduce algorithm



Algorithm for finding spanners

In graph: for any edge 𝑢𝑢, 𝑣𝑣 , where 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑢𝑢, 𝑣𝑣 > 𝛼𝛼 put the edge in the 

spanner.



Algorithm for finding spanners

In graph: for any edge 𝑢𝑢, 𝑣𝑣 , where 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑢𝑢, 𝑣𝑣 > 𝛼𝛼 put the edge in the 

spanner.

Spectral variant of the algorithm: Find a vector 𝑣𝑣 such that for any 

distribution 𝜇𝜇𝑣𝑣 over 𝑈𝑈, the spanner condition is not satisfied, i.e.,
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𝑇𝑇

add it to the spanner 𝑈𝑈.
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Weak Spanners

• Change the order of quantifiers in the spanner:

• Strong Spanners: For every 𝒗𝒗, there exists 𝝁𝝁𝒗𝒗, s.t. for every 𝒙𝒙 ∈ ℝ𝒅𝒅, 

• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣[ 𝑥𝑥,𝑢𝑢 2]

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣,𝑥𝑥[ 𝑥𝑥,𝑢𝑢 2]



Weak Spanners

• Change the order of quantifiers in the spanner:

• Strong Spanners: For every 𝒗𝒗, there exists 𝝁𝝁𝒗𝒗, s.t. for every 𝒙𝒙 ∈ ℝ𝒅𝒅, 

• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣[ 𝑥𝑥,𝑢𝑢 2]

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣,𝑥𝑥[ 𝑥𝑥,𝑢𝑢 2] 𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ max
𝑢𝑢

𝑥𝑥,𝑢𝑢 2



Weak Spanners

• Change the order of quantifiers in the spanner:

• Strong Spanners: For every 𝒗𝒗, there exists 𝝁𝝁𝒗𝒗, s.t. for every 𝒙𝒙 ∈ ℝ𝒅𝒅, 

• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣[ 𝑥𝑥,𝑢𝑢 2]

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣,𝑥𝑥[ 𝑥𝑥,𝑢𝑢 2]

Geometric interpretation: For any hyperplane 𝑯𝑯𝒙𝒙 (perpendicular to 𝑥𝑥), the 

maximum distance of the points in 𝑉𝑉 to 𝐻𝐻𝑥𝑥 is “preserved” over 𝑈𝑈

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ max
𝑢𝑢

𝑥𝑥,𝑢𝑢 2



• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

Weak Spanners

Geometric interpretation: For any hyperplane 𝑯𝑯𝒙𝒙 (perpendicular to 𝑥𝑥), the 

maximum distance of the points in 𝑉𝑉 to 𝐻𝐻𝑥𝑥 is “preserved” over 𝑈𝑈

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ max
𝑢𝑢

𝑥𝑥,𝑢𝑢 2

𝑉𝑉:



• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

Weak Spanners

Geometric interpretation: For any hyperplane 𝑯𝑯𝒙𝒙 (perpendicular to 𝑥𝑥), the 

maximum distance of the points in 𝑉𝑉 to 𝐻𝐻𝑥𝑥 is “preserved” over 𝑈𝑈

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ max
𝑢𝑢

𝑥𝑥,𝑢𝑢 2

𝑉𝑉:
𝑈𝑈:



Weak Spanners

• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

Geometric interpretation: For any hyperplane 𝑯𝑯𝒙𝒙 (perpendicular to 𝑥𝑥), the 

maximum distance of the points in 𝑉𝑉 to 𝐻𝐻𝑥𝑥 is “preserved” over 𝑈𝑈

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ max
𝑢𝑢

𝑥𝑥,𝑢𝑢 2

𝑥𝑥

𝑉𝑉:
𝑈𝑈:



Weak Spanners

• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

Geometric interpretation: For any hyperplane 𝑯𝑯𝒙𝒙 (perpendicular to 𝑥𝑥), the 

maximum distance of the points in 𝑉𝑉 to 𝐻𝐻𝑥𝑥 is “preserved” over 𝑈𝑈

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ max
𝑢𝑢

𝑥𝑥,𝑢𝑢 2

𝑣𝑣

ℓ 𝑥𝑥

𝑉𝑉:
𝑈𝑈:



Weak Spanners

• Weak Spanners: For every 𝑣𝑣 and every 𝒙𝒙 ∈ ℝ𝒅𝒅 , there exists 𝝁𝝁𝒗𝒗,𝒙𝒙, s.t.

Geometric interpretation: For any hyperplane 𝑯𝑯𝒙𝒙 (perpendicular to 𝑥𝑥), the 

maximum distance of the points in 𝑉𝑉 to 𝐻𝐻𝑥𝑥 is “preserved” over 𝑈𝑈

𝑥𝑥, 𝑣𝑣 2 ≤ 𝛼𝛼 ⋅ max
𝑢𝑢

𝑥𝑥,𝑢𝑢 2

𝑣𝑣𝑢𝑢

ℓ

ℓ
𝛼𝛼

𝑥𝑥

𝑉𝑉:
𝑈𝑈:
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Spectral variant of the algorithm: Find a vector 𝑣𝑣 and a direction 𝑥𝑥 s.t.

𝑥𝑥, 𝑣𝑣 2 > 𝛼𝛼 ⋅ max
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add  𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚
𝒗𝒗

𝒙𝒙,𝒗𝒗 𝟐𝟐 to the spanner 𝑈𝑈.
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Spectral variant of the algorithm: Find a vector 𝑣𝑣 and a direction 𝑥𝑥 s.t.
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𝒙𝒙,𝒗𝒗 𝟐𝟐 to the spanner 𝑈𝑈.
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• 𝑳𝑳 is a diagonally dominant 
lower triangular 

• 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘 𝐿𝐿 = 𝑑𝑑

• 𝑬𝑬 has small entries

• Theorem: Adding 𝑬𝑬 does not decrease the rank “a lot”
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From weak spanners to strong spanners

Theorem: any weak spectral spanner is in fact a strong 

spectral spanner



From weak spanners to strong spanners

Theorem: any weak spectral spanner is in fact a strong 

spectral spanner

• We need to show existence of 𝜇𝜇𝑣𝑣 → write an SDP for each 𝑣𝑣

• Instead consider the dual of SDP 

• Use hyperplane separating theorem to show such a distribution exists.
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Generalizing to 𝒌𝒌 < 𝒅𝒅



Spectral Spanners (𝒌𝒌 = 𝒅𝒅)

A set 𝑼𝑼 ⊆ 𝑽𝑽 is a 𝜶𝜶-spectral spanner of 𝑉𝑉 if for every 𝒗𝒗 ∈ 𝑉𝑉, there exists a 
probability distribution 𝝁𝝁𝒗𝒗 over 𝑼𝑼, s.t.

𝑣𝑣𝑣𝑣𝑇𝑇 ⪯ 𝛼𝛼 ⋅ 𝔼𝔼𝑢𝑢∼𝜇𝜇𝑣𝑣[𝑢𝑢𝑢𝑢𝑇𝑇]



Spectral Spanners (𝒌𝒌 ≤ 𝒅𝒅)

A set 𝑼𝑼 ⊆ 𝑽𝑽 is a 𝜶𝜶-spectral 𝒌𝒌-spanner of 𝑉𝑉 if for every 𝒗𝒗 ∈ 𝑉𝑉, there exists 
a probability distribution 𝝁𝝁𝒗𝒗 over 𝑼𝑼, s.t.
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Definition: For two matrices 𝐴𝐴𝑑𝑑×𝑑𝑑 and 𝐵𝐵𝑑𝑑×𝑑𝑑

𝑨𝑨 ⪯𝒌𝒌 𝑩𝑩

 Iff sum of the bottom 𝑑𝑑 − 𝑘𝑘 + 1 eigen values of 𝑩𝑩− 𝑨𝑨 is non-negative

• 𝐴𝐴 ⪯𝑑𝑑 𝐵𝐵 iff 𝐴𝐴 ⪯ 𝐵𝐵
• 𝐴𝐴 ⪯1 𝐵𝐵 iff 𝑑𝑑𝑟𝑟 𝐴𝐴 ≤ 𝑑𝑑𝑟𝑟(𝐵𝐵)
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Definition: For two matrices 𝐴𝐴𝑑𝑑×𝑑𝑑 and 𝐵𝐵𝑑𝑑×𝑑𝑑

𝑨𝑨 ⪯𝒌𝒌 𝑩𝑩

 Iff sum of the bottom 𝑑𝑑 − 𝑘𝑘 + 1 eigen values of 𝑩𝑩− 𝑨𝑨 is non-negative

• 𝐴𝐴 ⪯𝑑𝑑 𝐵𝐵 iff 𝐴𝐴 ⪯ 𝐵𝐵
• 𝐴𝐴 ⪯1 𝐵𝐵 iff 𝑑𝑑𝑟𝑟 𝐴𝐴 ≤ 𝑑𝑑𝑟𝑟(𝐵𝐵)  Preserve distances to 𝑘𝑘-subspaces.



How to find spectral 𝒌𝒌-spanner?

Spectral 𝑘𝑘-spanner Reduce dimension to 
𝑑𝑑′=O(k)

Find spectral 𝑑𝑑′-spanner



How to find spectral 𝒌𝒌-spanner?

Spectral 𝑘𝑘-spanner Reduce dimension to 
𝑑𝑑′=O(k)

Find spectral 𝑑𝑑′-spanner

Use the Greedy
algorithm



What is known?

• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
𝑈𝑈 ← ∅
For 𝑘𝑘 iterations, 
Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

• Greedy performs very well in practice

𝒌𝒌 = 𝟐𝟐



Reduction to full dimensional case

Input: a set of points 𝑉𝑉 and a parameter 𝑘𝑘 < 𝑑𝑑

Output: 𝑘𝑘-spanner of 𝑉𝑉

• Run The Greedy algorithm on 𝑉𝑉 for 2𝑘𝑘 iterations → 𝑼𝑼𝟏𝟏
• Let 𝑺𝑺 be the subspace spanned by 𝑈𝑈1
• Project 𝑉𝑉 on 𝑆𝑆

• (Now 𝒅𝒅′ = 𝑶𝑶 𝒌𝒌 )

• Find 𝑑𝑑′-spanner on projected 𝑉𝑉 → 𝑼𝑼𝟐𝟐

• Return 𝑼𝑼𝟏𝟏 ∪ 𝑼𝑼𝟐𝟐



Summary

• Defined the notion of 𝛼𝛼-Spectral 𝑘𝑘-Spanner
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Summary

• Defined the notion of 𝛼𝛼-Spectral 𝑘𝑘-Spanner
• Its connection to graph spanners and its geometric interpretation
• Spanner Result:
• Showed there exists an �𝑂𝑂(𝑘𝑘)-spectral 𝑘𝑘-spanner of size �𝑂𝑂 𝑘𝑘 .
• There exists a set of size 𝑒𝑒Ω 𝑐𝑐𝜖𝜖 such that any 𝑘𝑘1−𝜖𝜖-Spanner must contain 

all vectors
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• Defined the notion of 𝛼𝛼-Spectral 𝑘𝑘-Spanner
• Its connection to graph spanners and its geometric interpretation
• Spanner Result:

• Composable Core-set Result:

• Showed there exists an �𝑂𝑂(𝑘𝑘)-spectral 𝑘𝑘-spanner of size �𝑂𝑂 𝑘𝑘 .
• There exists a set of size 𝑒𝑒Ω 𝑐𝑐𝜖𝜖 such that any 𝑘𝑘1−𝜖𝜖-Spanner must contain 

all vectors

• There exists an �𝑶𝑶 𝒌𝒌 𝒌𝒌 -composable core-set of size �𝑶𝑶(𝒌𝒌) for the
determinant maximization problem.

• Any composable core-set of size 𝒌𝒌𝜷𝜷 for the determinant maximization 

must have an approximation factor of 𝒌𝒌
𝜷𝜷

𝒌𝒌(𝟏𝟏−𝒐𝒐 𝟏𝟏 )



Summary

• Defined the notion of 𝛼𝛼-Spectral 𝑘𝑘-Spanner
• Its connection to graph spanners and its geometric interpretation
• Spanner Result:

• Composable Core-set Result:

• Similar results for other spectral optimization problems.

• Showed there exists an �𝑂𝑂(𝑘𝑘)-spectral 𝑘𝑘-spanner of size �𝑂𝑂 𝑘𝑘 .
• There exists a set of size 𝑒𝑒Ω 𝑐𝑐𝜖𝜖 such that any 𝑘𝑘1−𝜖𝜖-Spanner must contain 

all vectors

• There exists an �𝑶𝑶 𝒌𝒌 𝒌𝒌 -composable core-set of size �𝑶𝑶(𝒌𝒌) for the
determinant maximization problem.

• Any composable core-set of size 𝒌𝒌𝜷𝜷 for the determinant maximization 

must have an approximation factor of 𝒌𝒌
𝜷𝜷

𝒌𝒌(𝟏𝟏−𝒐𝒐 𝟏𝟏 )



Comparison in practice

• Greedy algorithm 
• Widely used in Practice
• We showed it achieves 𝑂𝑂(𝐶𝐶𝑐𝑐2)

• Local Search algorithm
• Performs better than Greedy but runs ~4 times slower.
• Achieves 𝑂𝑂 𝑘𝑘2𝑐𝑐

• This algorithm
• Achieves �𝑂𝑂 𝑘𝑘𝑐𝑐

• Performs worse than Local Search and runs slower.



Open Problems

• Other applications of Spectral Spanners?
• Analogue of 𝑘𝑘-spanners for graphs?
• Composable Core-sets for DPP sampling?



Open Problems

• Other applications of Spectral Spanners?
• Analogue of 𝑘𝑘-spanners for graphs?
• Composable Core-sets for DPP sampling?

Thank you!
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